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Quantum dissipation is a dynamical collective effect
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We show that the dissipative dynamics observed in a small quantum system coupled to a large
one (the bath) is a consequence of increasing the size of the bath. We exemplify this effect with a
quantum harmonic oscillator coupled to N harmonic oscillators. We find that revivals in the level
population exist and give an est’mate of their period. For large values of N, the level population
decays exponentially coming into thermal equilibrium. We conclude that quantum dissipation is a
dynamical collective effect. Finally, we discuss extensions beyond the harmonic oscillator.

PACS number(s): 05.30.—d, 05.40.+j

I. INTRODUCTION

The dissipative behavior of quantum systems has been
extensively studied over the past years [1-16]. It has
often been claimed that quantum mechanics cannot pro-
vide new insights into the problem since it fails to take
into account the irreversible increase of entropy ob-
served in real life. In some cases modifications of the
Schrédinger equation have been proposed to reproduce
dissipative dynamics [17-21] but no satisfactory conclu-
sions have been reached as yet. On the other hand, tra-
ditional formalisms based on Master or Langevin equa-
tions [22-24] which are currently being used to simu-
late quantum dissipation, involve several approximations;
thus their conclusions are also unsatisfactory as a final
answer to the problem. Besides, it has been speculated
that the mean value of the population of a single quan-
tum oscillator coupled to a bath of N harmonic oscilla-
tors should revive after a certain relaxation time [25] but
no evidence has been reported so far. The main reasons
for this failure is that this effect is a consequence of both
the discreteness of the energy spectrum and the quantum
correlations and the standard treatments of the problem
mentioned above do not take adequate account of both.

In the present paper, we show a first-principles quan-
tum dissipative dynamics without resorting to biased ap-
proximations. Moreover, we show that a quantum har-
monic oscillator coupled to a bath of N harmonic oscil-
lators shows a dissipative evolution without referring to
a continuum energy spectrum or to a Markovian approx-
imation. Quite contrary to the widespread belief that
dissipation is an effect of loss of memory, the usual expo-
nential decay is seen as a result of increasing the size of
the bath. We also demonstrate that the expected revivals
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exist, and they are a consequence of all quantum correla-
tions inherent to this model. Furthermore, we conclude
from our treatment, based on first principles, that quan-
tum dissipation is a dynamical collective effect which has
nothing to do with loss of memory, randomness or any
other ad hoc hypothesis needed to obtain this physical
effect.

Let us summarize briefly the basic concepts of the max-
imum entropy principle (MEP) approach that will be
used hereafter. Within the MEP context, the density
matrix p is obtained from the knowledge of the expecta-
tion values of, say, the M + 1 operators O; (Og = I =
identity operator),

(0;) =Tr [p(t) O], 7=0,1,...

M, (1.1)

in the form

M
p(t) =exp [ —rol — D X205 |, (1.2)

where the M + 1 Lagrange multipliers ); are determined
to fulfill Eq. (1.1) [26-28]. The density operator / maxi-
mizes the entropy S(p) given by

M
S(p)=-Tr[pInp] =Xl +D_ X(0;)

i=1

(1.3)

in units of the Boltzmann constant. If we further im-
pose the condition that the evolution of j(t) obeys the
Liouville equation, the entropy turns out to be an in-
variant of motion. This fact stems from the well-known
result of quantum mechanics, which asserts that the evo-
lution of any function of a density matrix which evolves
according to the Liouville equation also obeys that equa-
tion. Thereby there emerges a very strong requirement
concerning the operators used to construct the density
matrix. It is found that the relevant operators entering
Eq. (1.2) are those which close a semi-Lie algebra under
commutation with the Hamiltonian [26]
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q
[H,O,’]=ihzgj;0j,

j=0

(1.4)

where g;; are the elements (¢ numbers) of a ¢ X ¢ ma-
trix G. This equation defines mathematically the concept
of relevant operators and the elements of the G matrix.
The Liouville equation can be replaced by a set of cou-
pled equations for the expectation values of the relevant
operators as follows:

M=_Zgu(o),

i=0

j=0,1,...,4. (L5)

II. MODEL

In order to study the relaxation problem we will
consider a quantum harmonic oscillator coupled to a
quantum-mechanical heat bath. The coupling between
both systems is assumed to be bilinear and we will use
the rotating wave approximation. The Hamiltonian reads
23]

N N
ata + Y wiblb; + Y (viath; +jbla), (2.1)
j=1 ji=1

kA = 1, where v; are the constants coupling the single
oscillator to the reservoir, w; is the energy of the jth
mode, and  is the energy of the single harmonic os-
cillator. af, b (@, b;) are creation (annihilation) boson
operators. The couphng coefficients -y; are assumed to
be small as compared with Q or w; [23]. Thus, only the
oscillators with w; ~ Q will be significantly coupled. As
mentioned in Ref. [23], in most physical problems N will
be a large finite number (i.e., N =~ 1023). Thus we shall
study this problem for a given N without replacing the
sums by integrals. We show that exact results for the
N — oo can be obtained.

The set of relevant operators which satisfy Eq. (1.4)
reads

A =ata, (2.2a)
B; =blb;, (2.2b)
F; = i(y;a'b; — ;bla) (2.2¢)

[; = v;ath; +~jbla, (2.2d)

Fip = i('Y;'Yki’;i)k — yivebib;) (2.2e)
T = v} vblbr +vvebLb; (2.2f)

where 5, k=1,...,N. A, Bj, ﬁ‘j, I} are operators repre-
senting the population of the single harmonic oscillator,
the populations of the modes of the heat bath, the cur-
rent between the mode j and the oscillator, and the in-
teraction between them, respectively. The operators .7-', k
and IJ , represent the current and the interaction energy
between the modes j and k of the reservoir. It is im-
portant to notice that although different modes are not
coupled by the Hamiltonian, their quantal correlations
[Egs. (2.2e)—(2.2f)] will appear in the evolution equations
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[6,10]. Using the fact that Z;; = 2|v;|2B;, Zjx = Z;»
and .7:'_,-,,, = —f"k,j, it can be easily proved that the num-
ber of independent operators is (N +1)2. The above men-
tioned operators can be thought of as microscopic ones.
A macroscopic description can be straightforwardly ob-
tained by summing over the modes of the bath (i.e., the
energy of the bath reads E w,B i)- A detailed study
in terms of these variables w1ll be presented elsewhere.

Thus the evolution equations for the expectation values
of the operators defined above are

M == E<F 2 (2.3a)
UBj) _ 5

praial il (2.3b)
d(;:: ! = —(Q - w;)}(L;) + 2l *(A) — Z(I k) (2.3¢)

k=1
d(fg) = (2 — w;)(F}) —Z(]—' &) (2.3d)
k=1

d(fi:t'k) (W —w;)(Ti) = bysl* (D) + el (L), (2:3¢)
d(ﬁﬁ = —(wk — 03)(Fip) + 1 P(Fe) + [l (E),

(2.3f)

with j,k = 1,...,N. Equations (2.3) are the exact dy-
namical evolution equations of the relevant operators for
this problem. Now, following Louisell [23], we specify as
the values of the initial conditions and the constants as

wr =R+ An,
B - C |n|
0

(2.4a)

ifn <ny

Ve = otherwise, (2.4b)

where n = k — (N + 1)/2 and n,, = B/C. Thus
we are considering the case with equally spaced modes
(A = wg41 — wg, the energy difference between neigh-
boring levels is the inverse of the density of modes in
the reservoir) which are centered at the single oscillator’s
energy and which have linearly decaying coupling con-
stants (B is the coupling with a mode in resonance and
C determines the length of the coupling). Therefore the
single harmonic oscillator is in resonance with a mode of
the bath for odd N only. The initial conditions are taken
as (Ao = 1, and (Bj)o = (P — 1)* [ = (ksT)~%,
where T is the temperature of the reservoir and kg is the
Boltzmann constant] with all the other initial conditions
set to zero. This allows comparison with previous results
[2,8,22-24]. As is well known, using the master equation
formalism, one finds that (A), decays exponentially to
an asymptotic value (A)y, = (€#® — 1)~ which is statis-
tically indistinguishable from the modes of the reservoir
(see, for example, Ref. [4]).

The numerical solution for the temporal evolution of
(A); is shown in Flg 1. We have used A/Q =6 x 1074,
B/ = 1.25 x 1073, n, /N = 0.62, and 8 = 1/9 [i.e.,
(A)oo = (e — 1)1 = 0.58] [29]. For small N we observe
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FIG. 1. Temporal evolution of (A);. (a) N =5, C/Q =
1.55 x 107%. (b) N = 31, C/Q = 2.5 x 107%. (c) N = 99,
C/Q=78x10"% (d) N =151, C/2 = 5.1 x 107%. In all
cases, A/Q2=6x 10"% B/Q =1.25x 1073, and 8 = 1/9Q.
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an oscillatory behavior. Note, however, that the lowest
value of (A); is (A)s [see Fig. 1(a)]. As N grows the
oscillations decrease and a huge revival appears [see Fig.
1(b)]. For N large enough, (A); decays to (A)o, and
then revives [see Figs. 1(c)-1(d)]. We have obtained
numerically that the revival time is

t. ~ 27/ A. (2.5)

By observing Fig. 1, we conclude that when the number
of oscillators of the bath is sufficiently large, the exchange
of energy between the systems becomes dissipative. We
have observed that this effect is independent of the pa-
rameters as well as of the temperature of the bath and is
therefore a consequence of its collective dynamics.

In Fig. 2 we show the evolution for small values of 2t
(i-e., t < t;). We consider those values of N for which
the system displays a decaying behavior. We observe
that for 0t < t 5 t/, (A)¢ evolves like a cosine (see
Refs. [30,31]). For ¢’ St < t,, (A)t can be fitted by a
decaying exponential function. A similar behavior has
been described by Fonda et al. (see pp. 102 and 105
of Ref. [31]). We have numerically observed that as IV
grows, the exponential behavior is achieved earlier, that
is, ¥’ — 0. In the limit N — oo,

(A)e = (A)oo + (1 = (A)oo) exp(—t/7a) (2.6)
with a characteristic time of the decay
A
Ta= 5 o (2.7)

Moreover, recent simulations with a random distribution
for the energy levels show that the decay behavior re-
mains unaltered, as shown in Fig. 2, while the revivals
emerge for a larger number of levels.

The decay and revival times can be independently de-
termined by varying A and B provided an appropriate N
is used. For finite V and ¢, > t > 74, (A); is not exactly

(A) o since the bath is slightly out of equilibrium and the
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FIG. 2. Temporal evolution of (A)t A, Asymptotic be-

havior given by Eq. (11). B, N = 99, C/Q = 7.8 x 107%. C,
N =151,C/Q2=5.1x10"°% D, N = 301, C/Q = 2.6 x 10™°.
E N =601, C/Q=1.3 x 107%. In all cases A/Q =6 x 107%,
B/ =1.25x10"% and 8 =1/Q.
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interaction energy is not zero. We have also found that
for large IV the evolution described by Eq. (2.6) does not
depend on the system being in resonance with any mode.
It is important to note that the dependence of 74 on A
and B is exactly the same as the one obtained using the
master equation formalism [4,23,24].

We have performed simulations for two-level systems
as well as for a system with a random distribution of lev-
els and we have observed that the same collective effect
appears. Going beyond the harmonic system implies, in
our formalism, that the number of equations increases,
since we described the physics of the problem from a Lie
algebra based approach which leads to a straightforward
generalization of the harmonic oscillator to more compli-
cated models as, for instance, the N-level system.

III. CONCLUSIONS

We have concluded the following: (a) We have ob-
tained the relevant operators for a harmonic oscillator
coupled to a quantum-mechanical heat bath [Eq. (2.2)],
which allows us to solve exactly the problem at hand. (b)
The exact temporal evolution of (A)t has been studied.
For ¢t = 0" we have observed a cosinelike behavior. Al-
though we have not made any approximations for large
N, we have obtained a decaying exponential approach
of (A); to the asymptotic value (A}, which is expected
when the particle is in thermal equilibrium with the bath.
(¢) (A); shows a revival since the quantum correlations,
which naturally appear in our set of relevant operators,
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were not neglected. (d) We have found the dependence
of t, and 74 on the constants of the problem. From Egs.
(2.5) and (2.7) we see that both times can be chosen
independently (i.e., t, can be as large as one wants, in-
dependent of the value of 74). Thus the usual quantum
Brownian particle solution can be obtained. As it is well
known, in order to achieve irreversible behavior in a lit-
eral sense the number of heat-bath oscillators should go
to infinity. The approach to this limit is not continuous
because it is realized as the divergence of the revival time.

Finally, we would like to emphasize that within our
approach, quantum dissipation emerges as a dynami-
cal collective effect, derived from first principles without
any approximation. We believe that this conception is
brought out clearly and graphically in a numerical sim-
ulation of a realistic model where each heat-bath degree
of freedom is individually represented.
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